login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200015 Decimal expansion of greatest x satisfying x^2 - cos(x) = 3*sin(x). 3
1, 6, 9, 0, 7, 7, 9, 7, 3, 8, 9, 6, 9, 8, 1, 5, 3, 3, 4, 9, 5, 7, 5, 0, 4, 8, 5, 7, 5, 5, 8, 8, 0, 9, 5, 4, 3, 4, 2, 1, 3, 2, 4, 1, 6, 3, 9, 0, 6, 5, 4, 5, 2, 8, 5, 4, 4, 5, 1, 8, 3, 8, 5, 4, 9, 7, 2, 6, 1, 2, 8, 7, 2, 5, 7, 1, 9, 9, 7, 4, 5, 7, 7, 4, 3, 1, 6, 6, 2, 4, 6, 8, 3, 9, 3, 9, 2, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  -0.2943487723356863983696578902036195...

greatest x: 1.690779738969815334957504857558809...

MATHEMATICA

a = 1; b = -1; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.3, -.29}, WorkingPrecision -> 110]

RealDigits[r]  (* A200014 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]

RealDigits[r]   (* A200015 *)

PROG

(PARI) a=1; b=-1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

CROSSREFS

Cf. A199949.

Sequence in context: A020792 A242760 A196607 * A298517 A199451 A135154

Adjacent sequences:  A200012 A200013 A200014 * A200016 A200017 A200018

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

EXTENSIONS

a(88)-a(99) corrected by G. C. Greubel, Jun 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)