login
A198346
Decimal expansion of greatest x having 3*x^2-4x=-cos(x).
3
1, 2, 4, 8, 8, 9, 2, 2, 6, 4, 6, 3, 6, 2, 1, 5, 2, 6, 8, 8, 1, 6, 8, 4, 2, 2, 5, 4, 1, 9, 7, 9, 4, 9, 2, 4, 4, 4, 9, 2, 3, 3, 4, 2, 5, 5, 8, 9, 3, 6, 7, 3, 6, 0, 9, 9, 4, 7, 8, 6, 3, 4, 6, 0, 5, 0, 7, 2, 9, 6, 7, 0, 7, 9, 5, 1, 7, 7, 1, 3, 2, 1, 0, 5, 3, 3, 6, 8, 5, 9, 6, 3, 6, 2, 7, 0, 1, 4, 4
OFFSET
1,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.310259191918510960781595559044242...
greatest x: 1.2488922646362152688168422541979...
MATHEMATICA
a = 3; b = -4; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
RealDigits[r1] (* A198345 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.24, 1.25}, WorkingPrecision -> 110]
RealDigits[r2] (* A198346 *)
CROSSREFS
Cf. A197737.
Sequence in context: A187221 A129280 A103224 * A078750 A360156 A054785
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved