login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198346 Decimal expansion of greatest x having 3*x^2-4x=-cos(x). 3
1, 2, 4, 8, 8, 9, 2, 2, 6, 4, 6, 3, 6, 2, 1, 5, 2, 6, 8, 8, 1, 6, 8, 4, 2, 2, 5, 4, 1, 9, 7, 9, 4, 9, 2, 4, 4, 4, 9, 2, 3, 3, 4, 2, 5, 5, 8, 9, 3, 6, 7, 3, 6, 0, 9, 9, 4, 7, 8, 6, 3, 4, 6, 0, 5, 0, 7, 2, 9, 6, 7, 0, 7, 9, 5, 1, 7, 7, 1, 3, 2, 1, 0, 5, 3, 3, 6, 8, 5, 9, 6, 3, 6, 2, 7, 0, 1, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: 0.310259191918510960781595559044242...

greatest x: 1.2488922646362152688168422541979...

MATHEMATICA

a = 3; b = -4; c = -1;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 2}]

r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]

RealDigits[r1] (* A198345 *)

r2 = x /. FindRoot[f[x] == g[x], {x, 1.24, 1.25}, WorkingPrecision -> 110]

RealDigits[r2] (* A198346 *)

CROSSREFS

Cf. A197737.

Sequence in context: A187221 A129280 A103224 * A078750 A054785 A236924

Adjacent sequences:  A198343 A198344 A198345 * A198347 A198348 A198349

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 17:02 EDT 2020. Contains 336277 sequences. (Running on oeis4.)