login
A198345
Decimal expansion of least x having 3*x^2-4x=-cos(x).
3
3, 1, 0, 2, 5, 9, 1, 9, 1, 9, 1, 8, 5, 1, 0, 9, 6, 0, 7, 8, 1, 5, 9, 5, 5, 5, 9, 0, 4, 4, 2, 4, 2, 4, 4, 3, 9, 0, 2, 4, 3, 5, 6, 2, 4, 7, 4, 9, 9, 6, 9, 6, 4, 9, 6, 7, 1, 4, 2, 4, 6, 2, 1, 0, 0, 0, 7, 7, 5, 1, 5, 3, 2, 2, 5, 9, 1, 1, 4, 0, 6, 9, 7, 0, 4, 5, 7, 2, 9, 4, 8, 7, 1, 6, 7, 8, 4, 4, 7, 6, 7, 9
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.310259191918510960781595559044242...
greatest x: 1.2488922646362152688168422541979...
MATHEMATICA
a = 3; b = -4; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
RealDigits[r1] (* A198345 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.24, 1.25}, WorkingPrecision -> 110]
RealDigits[r2] (* A198346 *)
CROSSREFS
Cf. A197737.
Sequence in context: A308077 A336344 A352609 * A104416 A194582 A357438
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved