

A197251


Decimal expansion of least x>0 having sin(x)=(sin 5x)^2.


2



4, 0, 5, 4, 1, 2, 8, 9, 5, 5, 4, 0, 0, 0, 9, 1, 7, 9, 6, 9, 6, 0, 8, 2, 1, 7, 1, 5, 3, 1, 2, 4, 8, 1, 7, 2, 2, 7, 5, 4, 4, 8, 9, 0, 5, 2, 5, 2, 2, 8, 5, 8, 9, 2, 2, 1, 7, 0, 7, 1, 2, 8, 7, 3, 9, 0, 1, 9, 2, 8, 1, 7, 9, 3, 2, 9, 5, 7, 2, 7, 8, 2, 9, 8, 5, 1, 7, 6, 8, 9, 3, 3, 2, 2, 4, 9, 1, 8, 0, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

x=0.04054128955400091796960821715312481722...


MATHEMATICA

b = 1; c = 5; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .03, .1}, WorkingPrecision > 100]
RealDigits[t] (* A197251 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}]


CROSSREFS

Cf. A197133.
Sequence in context: A185199 A201196 A019906 * A049247 A175621 A016578
Adjacent sequences: A197248 A197249 A197250 * A197252 A197253 A197254


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 12 2011


STATUS

approved



