|
|
A016578
|
|
Decimal expansion of log(3/2).
|
|
7
|
|
|
4, 0, 5, 4, 6, 5, 1, 0, 8, 1, 0, 8, 1, 6, 4, 3, 8, 1, 9, 7, 8, 0, 1, 3, 1, 1, 5, 4, 6, 4, 3, 4, 9, 1, 3, 6, 5, 7, 1, 9, 9, 0, 4, 2, 3, 4, 6, 2, 4, 9, 4, 1, 9, 7, 6, 1, 4, 0, 1, 4, 3, 2, 4, 1, 4, 4, 1, 0, 0, 6, 7, 1, 2, 4, 8, 9, 1, 4, 2, 5, 1, 2, 6, 7, 7, 5, 2, 4, 2, 7, 8, 1, 7, 3, 1, 3, 4, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
L. B. W. Jolley, Summation of Series, Dover (1961), eq (102), page 20.
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..20000
Index entries for transcendental numbers
|
|
FORMULA
|
Equals Sum {k>=1} 1/(k*3^k). - Robert G. Wilson v, Aug 08 2011
Equals 1/2 - 1/(2*2^2) + 1/(3*2^3) - 1/(4*2^4) + ... [Jolley].
Equals A002391-A002162. - Michel Marcus, Sep 17 2016
From Amiram Eldar, Aug 07 2020: (Start)
Equals 2 * arctanh(1/5).
Equals Integral_{x=0..oo} 1/(2*exp(x) + 1) dx. (End)
|
|
EXAMPLE
|
0.405465108108164381978013115464349136571990423462494197614013...
|
|
MATHEMATICA
|
RealDigits[Log[3/2], 10, 111][[1]] (* Robert G. Wilson v, Aug 08 2011 *)
|
|
PROG
|
(PARI) default(realprecision, 20080); x=10*log(3/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b016578.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009
|
|
CROSSREFS
|
Cf. A016529, A002391, A002162.
Sequence in context: A197251 A049247 A175621 * A268631 A335775 A308108
Adjacent sequences: A016575 A016576 A016577 * A016579 A016580 A016581
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|