login
A196764
Decimal expansion of the least x>0 satisfying 6=x*sin(x).
4
7, 2, 5, 6, 6, 3, 2, 9, 3, 6, 6, 2, 8, 3, 9, 9, 8, 6, 4, 3, 1, 3, 5, 5, 6, 1, 0, 0, 8, 6, 6, 9, 5, 7, 1, 2, 9, 1, 9, 4, 7, 1, 7, 0, 0, 4, 8, 3, 9, 7, 4, 2, 5, 3, 9, 6, 5, 8, 2, 0, 2, 5, 0, 8, 7, 7, 0, 8, 8, 9, 5, 7, 4, 1, 2, 5, 2, 7, 0, 7, 3, 9, 7, 1, 4, 4, 7, 1, 1, 7, 3, 4, 7, 2, 2, 2, 6, 3, 6, 1
OFFSET
1,1
EXAMPLE
x=7.25663293662839986431355610086695712919471700...
MATHEMATICA
Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196760 *)
t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196761 *)
t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196762 *)
t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196763 *)
t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196764 *)
CROSSREFS
Cf. A196765.
Sequence in context: A352890 A066903 A194886 * A074457 A200237 A072761
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved