This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196767 Decimal expansion of the least x>0 satisfying 1=x*sin(x-pi/2), or, equivalently, -1=x*cos(x). 6
 2, 0, 7, 3, 9, 3, 2, 8, 0, 9, 0, 9, 1, 2, 1, 4, 9, 0, 1, 1, 6, 7, 7, 7, 6, 2, 9, 7, 7, 9, 9, 3, 6, 0, 0, 6, 7, 9, 4, 6, 2, 1, 9, 5, 3, 1, 5, 2, 8, 5, 3, 0, 5, 4, 4, 6, 7, 9, 2, 9, 5, 2, 6, 7, 8, 5, 7, 8, 6, 8, 5, 6, 8, 8, 8, 6, 8, 7, 0, 2, 3, 2, 9, 9, 2, 8, 2, 1, 8, 4, 1, 3, 0, 6, 9, 9, 4, 6, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE x=2.073932809091214901167776297799360067946219531... MATHEMATICA Plot[{1/x, Sin[x], Sin[x - Pi/2], Sin[x - Pi/3], Sin[x - Pi/4]}, {x,   0, 2 Pi}] t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] RealDigits[t]  (* A133866 *) t = x /. FindRoot[1/x == Sin[x - Pi/2], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]     (* A196767 *) t = x /. FindRoot[1/x == Sin[x - Pi/3], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]   (* A196768 *) t = x /. FindRoot[1/x == Sin[x - Pi/4], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]    (* A196769 *) t = x /. FindRoot[1/x == Sin[x - Pi/5], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]   (* A196770 *) t = x /. FindRoot[1/x == Sin[x - Pi/6], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]    (* A196771 *) CROSSREFS Cf. A196772. Sequence in context: A300704 A300702 A105394 * A307216 A011343 A326731 Adjacent sequences:  A196764 A196765 A196766 * A196768 A196769 A196770 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 15:12 EDT 2019. Contains 328019 sequences. (Running on oeis4.)