This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195424 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 5,12,13 right triangle ABC. 5
 5, 8, 4, 7, 1, 3, 2, 5, 5, 9, 5, 0, 1, 4, 2, 2, 4, 5, 6, 7, 6, 1, 2, 1, 4, 1, 6, 4, 2, 7, 0, 6, 2, 1, 7, 4, 5, 9, 1, 6, 1, 6, 2, 7, 0, 2, 9, 2, 0, 4, 7, 0, 4, 5, 4, 7, 8, 0, 8, 9, 1, 5, 8, 3, 6, 9, 1, 8, 0, 5, 9, 4, 1, 7, 7, 6, 9, 8, 5, 7, 4, 3, 1, 8, 8, 1, 4, 1, 4, 4, 1, 1, 7, 3, 8, 7, 4, 9, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A195304 for definitions and a general discussion. LINKS EXAMPLE Philo(ABC,G)=0.584713255950142245676121416427062174591616270... MATHEMATICA a = 5; b = 12; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195412 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195413 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195414 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC, G) A195424 *) CROSSREFS Cf. A195304. Sequence in context: A199288 A099878 A167901 * A021635 A021175 A011095 Adjacent sequences:  A195421 A195422 A195423 * A195425 A195426 A195427 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified June 17 23:56 EDT 2013. Contains 226327 sequences.