login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195427 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(7,24,25). 5
1, 2, 2, 2, 2, 4, 4, 4, 2, 3, 2, 2, 5, 9, 6, 9, 8, 0, 5, 1, 3, 3, 2, 5, 9, 6, 3, 6, 3, 2, 5, 9, 7, 9, 7, 9, 3, 1, 2, 0, 8, 2, 0, 5, 9, 2, 3, 8, 6, 3, 6, 7, 9, 5, 7, 6, 4, 6, 8, 9, 2, 4, 2, 6, 6, 4, 9, 6, 6, 3, 4, 6, 2, 0, 7, 7, 2, 0, 8, 7, 9, 0, 4, 1, 4, 8, 0, 4, 8, 3, 2, 3, 8, 8, 1, 7, 7, 6, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

See A195304 for definitions and a general discussion.

LINKS

Table of n, a(n) for n=2..101.

EXAMPLE

(C)=12.22244423225969805133259636325979793120...

MATHEMATICA

a = 7; b = 24; h = 2 a/3; k = b/3;

f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f1 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (A) A195425 *)

f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f2 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (B) A195426 *)

f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f3 = (f[t])^(1/2) /. Part[s, 1]

RealDigits[%, 10, 100] (* (C) A195427 *)

c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)

RealDigits[%, 10, 100] (* Philo(ABC, G) A195428 *)

CROSSREFS

Cf. A195304.

Sequence in context: A158502 A331813 A215244 * A006643 A080217 A157901

Adjacent sequences:  A195424 A195425 A195426 * A195428 A195429 A195430

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Sep 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 19:51 EDT 2021. Contains 343070 sequences. (Running on oeis4.)