login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194513 Second coordinate of (2,7)-Lagrange pair for n. 3
-1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,14

COMMENTS

See A194508.

LINKS

Table of n, a(n) for n=1..97.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).

FORMULA

From Chai Wah Wu, Jan 21 2020: (Start)

a(n) = a(n-1) + a(n-9) - a(n-10) for n > 10.

G.f.: x*(x^8 - x^7 + x^6 - x^5 + x^4 + x^3 - x^2 + x - 1)/(x^10 - x^9 - x + 1). (End)

EXAMPLE

This table shows (x(n),y(n)) for 1<=n<=13:

n...... 1..2..3..4..5..6..7..8..9..10..11..12..13

x(n)... 4..1..5..2.-1..3..0..4..1..5...2...6...3

y(n).. -1..0.-1..0..1..0..1..0..1..0...1...0...1

MATHEMATICA

c = 2; d = 7;

x1 = {4, 1, 5, 2, -1, 3, 0, 4, 1}; y1 = {-1, 0, -1, 0, 1, 0, 1, 0, 1};

x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]

y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]

Table[x[n], {n, 1, 100}] (* A194512 *)

Table[y[n], {n, 1, 100}] (* A194513 *)

Table[y[n], {n, 1, 100}]

r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]

TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]

CROSSREFS

Cf. A194508, A194512.

Sequence in context: A096370 A330721 A076622 * A245040 A161314 A161248

Adjacent sequences:  A194510 A194511 A194512 * A194514 A194515 A194516

KEYWORD

sign

AUTHOR

Clark Kimberling, Aug 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 23:10 EDT 2020. Contains 337274 sequences. (Running on oeis4.)