login
A194516
First coordinate of (3,5)-Lagrange pair for n.
3
2, -1, 1, 3, 0, 2, -1, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 4, 6, 8, 5, 7, 9, 6, 8, 5, 7, 9, 6, 8, 10, 7, 9, 6, 8, 10, 7, 9, 11, 8, 10, 7, 9, 11, 8, 10, 12, 9, 11, 8, 10, 12, 9, 11, 13, 10, 12, 9, 11, 13, 10, 12, 14, 11, 13, 10
OFFSET
1,1
COMMENTS
See A194508.
FORMULA
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9.
G.f.: x*(2*x^7 - 3*x^6 + 2*x^5 - 3*x^4 + 2*x^3 + 2*x^2 - 3*x + 2)/(x^9 - x^8 - x + 1). (End)
a(n) = 2*n - 5*floor((3*n + 3)/8). - Ridouane Oudra, Dec 29 2020
EXAMPLE
This table shows (x(n),y(n)) for 1<=n<=13:
n...... 1..2..3..4..5..6..7..8..9..10..11..12..13
x(n)... 2.-1..1..3..0..2.-1..1..3..0...2...4...1
y(n).. -1..1..0.-1..1..0..2..1..0..2...1...0...2
MATHEMATICA
c = 3; d = 5;
x1 = {2, -1, 1, 3, 0, 2, -1, 1}; y1 = {-1, 1, 0, -1, 1, 0, 2, 1};
x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
Table[x[n], {n, 1, 100}] (* A194516 *)
Table[y[n], {n, 1, 100}] (* A194517 *)
r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
CROSSREFS
Sequence in context: A325687 A230079 A105400 * A299235 A341259 A245840
KEYWORD
sign
AUTHOR
Clark Kimberling, Aug 28 2011
STATUS
approved