login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193862
Mirror of the triangle A115068.
7
1, 2, 2, 3, 6, 4, 4, 12, 16, 8, 5, 20, 40, 40, 16, 6, 30, 80, 120, 96, 32, 7, 42, 140, 280, 336, 224, 64, 8, 56, 224, 560, 896, 896, 512, 128, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 10, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512, 11, 110, 660
OFFSET
0,2
COMMENTS
A193862 is obtained by reversing the rows of the triangle A115068.
Riordan array (1/(1-x)^2, 2*x/(1-x)). - Philippe Deléham, Jan 29 2014
Let P(n, x) := Sum_{k=1..n} T(n, k)*x^k. Then P(n, P(m, x)) = P(n*m, x) for all n and m in Z. - Michael Somos, Apr 10 2020
FORMULA
Write w(n,k) for the triangle at A115068. The triangle at A193862 is then given by w(n,n-k).
T(n, k) = binomial(n, k)/2 * 2^k. - Michael Somos, Apr 10 2020
EXAMPLE
First six rows:
1
2...2
3...6....4
4...12...16...8
5...20...40...40....16
6...30...80...120...96...32
Production matrix begins
2......2
-1/2...1...2
1/4....0...1...2
-1/8...0...0...1...2
1/16...0...0...0...1...2
-1/32..0...0...0...0...1...2
1/64...0...0...0...0...0...1...2
-1/128.0...0...0...0...0...0...1...2
1/256..0...0...0...0...0...0...0...1...2
- Philippe Deléham, Jan 29 2014
MATHEMATICA
z = 11;
p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1;
q[n_, x_] := (2 x + 1)^n;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A115068 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193862 *)
T[ n_, k_] := Binomial[n, k]/2 2^k; (* Michael Somos, Apr 10 2020 *)
PROG
(PARI) {T(n, k) = binomial(n, k)/2 * 2^k}; /* Michael Somos, Apr 10 2020 */
CROSSREFS
Cf. A115068.
Sequence in context: A294033 A376168 A254827 * A258631 A254947 A185810
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved