The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193863 Expansion of Product_{n>=0} (1 + q*(-q^2)^n) / (1 - q*(-q^2)^n). 1
 1, 2, 2, 0, -2, 0, 4, 4, -2, -6, 0, 8, 4, -8, -8, 8, 14, -4, -18, 0, 24, 8, -28, -20, 28, 34, -24, -48, 16, 64, 0, -76, -18, 88, 44, -96, -78, 96, 116, -88, -160, 68, 208, -32, -252, -16, 296, 84, -332, -170, 354, 272, -360, -392, 344, 528, -296, -672, 216, 824, -96, -976, -72, 1116, 286, -1240, -552, 1336, 876, -1384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Expansion of E(-q^2, +q) for E(q,x) = Product_{n>=0} ( 1 + x*q^n ) / ( 1 - x*q^n ). Replacing q by -q in the g.f. gives the inverse of the g.f., whose expansion is obtained by negating every second term. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA Euler transform of period 8 sequence [ 2, -1, -2, 0, 2, 1, -2, 0, ...]. - Michael Somos, Feb 26 2012 G.f.: prod(n>=0, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ). G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k )/prod(k=1..n, 1-(-q^2)^k ) * q^n ). G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k)/( prod(k=1..n, 1-(-q^2)^k) * prod(k=0..n-1, 1-q*(-q^2)^k ) ) * q^n * (-q^2)^(n*(n-1)/2) ). Convolution of A300574 and A300575. - Seiichi Manyama, Nov 22 2019 EXAMPLE 1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 + 4*x^7 - 2*x^8 - 6*x^9 + 8*x^11 + ... PROG (PARI) N=66; q='q+O('q^N); /* that many terms */ gf = prod(n=0, N, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ); Vec(gf) /* show terms */ /* Alternative computation of the g.f. using a product form */ V=[0, -2, 1, 2, 0, -2, -1, 2]; /* note vectors are one-based */ gf=prod(n=0, N, (1-q^n)^(V[n%8+1]) ); (PARI) {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n) )^[ 0, -2, 1, 2, 0, -2, -1, 2][k%8 + 1]), n))} /* Michael Somos, Feb 26 2012 */ CROSSREFS Cf. A015128 E(+q,+q), A002448 E(+q,-q), A000122 E(-q,+q), A004402 E(-q,-q), A080054 E(+q^2,+q), A108494 E(+q^2,-q), A300574, A300575. Sequence in context: A248512 A182122 A104624 * A273496 A286576 A322523 Adjacent sequences:  A193860 A193861 A193862 * A193864 A193865 A193866 KEYWORD sign AUTHOR Joerg Arndt, Aug 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 02:11 EDT 2020. Contains 333238 sequences. (Running on oeis4.)