login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193506
Decimal expansion of bean curve perimeter.
1
3, 7, 5, 0, 2, 1, 3, 6, 4, 5, 1, 5, 7, 2, 4, 2, 5, 7, 1, 9, 2, 8, 2, 9, 5, 7, 9, 6, 6, 0, 5, 5, 1, 4, 0, 3, 1, 6, 1, 8, 2, 4, 5, 4, 8, 9, 8, 5, 1, 0, 4, 9, 1, 3, 0, 6, 0, 5, 0, 7, 8, 5, 9, 7, 8, 3, 9, 2, 0, 3, 0, 5, 9, 5, 5, 9, 8, 1, 4, 3, 1, 3, 0, 5, 7, 4, 2, 4, 8, 0, 2, 3, 2, 7, 9, 6, 2, 2, 6, 5, 1, 5, 9, 8, 6, 1, 8, 5, 7, 4
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Bean Curve
EXAMPLE
3.750213645...
MATHEMATICA
f[x_, y_] = x^4 + x^2*y^2 + y^4 - x*(x^2 + y^2); x1 = 1/3; x2 = 5/6; sx = Solve[f[x, y] == 0, x]; sy = Solve[f[x, y] == 0, y]; g1[y_] = x /. sx[[3]]; g2[y_] = x /. sx[[4]]; f[x_] = y /. sy[[4]]; p1 = NIntegrate[ Sqrt[1 + g1'[y]^2], {y, 0, f[x1]}, WorkingPrecision -> 120]; p2 = NIntegrate[ Sqrt[1 + f'[x]^2], {x, x1, x2}, WorkingPrecision -> 120]; p3 = NIntegrate[ Sqrt[1 + g2'[y]^2], {y, 0, f[x2]}, WorkingPrecision -> 120]; Take[ RealDigits[2*(p1+p2+p3)][[1]], 105]
Take[RealDigits[9/2 + NIntegrate[2 Sqrt[1 + (1 - 2 x + (1 + 3 x - 6 x^2)/Sqrt[1 + (2 - 3 x) x])^2/(8 x (1 - x + Sqrt[1 + (2 - 3 x) x]))] - 1/Sqrt[x] - 1/(2 (1 - x)^(3/4)) - 3/(8 (1 - x)^(1/4)), {x, 0, 1}, WorkingPrecision -> 220, PrecisionGoal -> 110, MaxRecursion -> 50]][[1]], 110] (* Eric W. Weisstein, Jul 23 2020 *)
CROSSREFS
Cf. A193505 (area).
Cf. A336501 (decimal expansion of the lima bean curve).
Sequence in context: A331733 A301755 A302558 * A086242 A322931 A096627
KEYWORD
nonn,cons
AUTHOR
STATUS
approved