The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331733 a(n) = sigma(A225546(n)), where sigma is the sum of divisors. 8
 1, 3, 7, 4, 31, 15, 511, 12, 13, 63, 131071, 28, 8589934591, 1023, 127, 6, 36893488147419103231, 39, 680564733841876926926749214863536422911, 124, 2047, 262143, 231584178474632390847141970017375815706539969331281128078915168015826259279871, 60, 121, 17179869183, 91, 2044 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = A000203(A225546(n)). For all n >= 1, A000035(a(A016754(n))) = 1. [Result is odd for all odd squares] MATHEMATICA Array[If[# == 1, 1, DivisorSigma[1, #] &@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 28] (* Michael De Vlieger, Feb 08 2020 *) PROG (PARI) A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A331733(n) = if(1==n, 1, my(f=factor(n), u=#binary(vecmax(f[, 2])), prods=vector(u, x, 1), m=1, e); for(i=1, u, for(k=1, #f~, if(bitand(f[k, 2], m), prods[i] *= f[k, 1])); m<<=1); prod(i=1, u, (prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1))); CROSSREFS Cf. A000203, A048675, A225546, A331309, A331734, A331735, A331741. Cf. A323243, A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653. Sequence in context: A114691 A023639 A291534 * A301755 A302558 A193506 Adjacent sequences:  A331730 A331731 A331732 * A331734 A331735 A331736 KEYWORD nonn AUTHOR Antti Karttunen, Feb 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 04:49 EDT 2021. Contains 343072 sequences. (Running on oeis4.)