login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193507 Ramanujan primes of the second kind: a(n) is the smallest prime such that if prime x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x. 17
2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 131, 151, 157, 173, 181, 191, 229, 233, 239, 241, 251, 269, 271, 283, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 571, 577, 593, 599, 601, 607, 613, 643, 647, 653, 659 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Apparently A168425 and the 2. - R. J. Mathar, Aug 25 2011

An odd prime p is in the sequence iff the previous prime is Ramanujan. The Ramanujan primes and the Ramanujan primes of the second kind are the mutually wrapping up sequences: a(1)<=R_1<=a(2)<=R_2<=a(3)<=R_3<=.... . - Vladimir Shevelev, Aug 29 2011

All terms of the sequence are in A194598. - Vladimir Shevelev, Aug 30 2011

LINKS

Table of n, a(n) for n=1..54.

V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.

J. Sondow, Ramanujan Prime in MathWorld

J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.

FORMULA

A080359(n) <= a(n) <= A104272(n) = R_n (Cf. A194184, A194186).

a(n)>p_(2*n-1); a(n)~p_{2n} (Cf. properties of R_n in A104272 and the above comment). - Vladimir Shevelev, Aug 28 2011

EXAMPLE

Since R_2=11 (see A104272), then for x >= 11, we have pi(x) - pi(x/2) >= 2. However, if to consider only prime x, then we see that, for x=7,5,3, pi(x) - pi(x/2)= 2, but pi(2) - pi(1)= 1. Therefore, already for prime x>=3, we have pi(x) - pi(x/2) >= 2. Thus a(2)=3.

MATHEMATICA

nn = 120; (* nn=120 returns 54 terms *)

R = Table[0, {nn}]; s = 0;

Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3 nn]}];

A104272 = R + 1;

Join[{2}, Select[Prime[Range[nn]], MemberQ[A104272, NextPrime[#, -1]]&]] (* Jean-François Alcover, Nov 07 2018, after T. D. Noe in A104272 *)

CROSSREFS

Cf. A104272 (Ramanujan primes).

Sequence in context: A275030 A194598 A080359 * A103087 A302485 A135118

Adjacent sequences: A193504 A193505 A193506 * A193508 A193509 A193510

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Aug 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 5 03:20 EST 2023. Contains 360082 sequences. (Running on oeis4.)