The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192974 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments. 3
 0, 1, 4, 14, 37, 84, 172, 329, 600, 1058, 1821, 3080, 5144, 8513, 13996, 22902, 37349, 60764, 98692, 160105, 259520, 420426, 680829, 1102224, 1784112, 2887489, 4672852, 7561694, 12236005, 19799268, 32036956, 51838025, 83876904, 135716978 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 1 + 2*n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1). FORMULA a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5). G.f.: x*(1+3*x^2)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014 a(n) = Fibonacci(n+7) + Lucas(n+3) - 2*n*(n+4) - 17. - Ehren Metcalfe, Jul 14 2019 MATHEMATICA (* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + 2*n^2 +1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192973 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192974 *) (* Additional programs *) Table[Fibonacci[n+7] +LucasL[n+3] -2n(n+4) -17, {n, 0, 40}] (* Vincenzo Librandi, Jul 15 2019 *) PROG (PARI) a(n)=fibonacci(n+7) + fibonacci(2*n+6)/fibonacci(n+3) - 2*n*(n+4) - 17 \\ Richard N. Smith, Jul 14 2019 (MAGMA) [Fibonacci(n+7)+Lucas(n+3)-2*n*(n+4)-17: n in [0..40]]; // Vincenzo Librandi, Jul 15 2019 (Sage) f=fibonacci; [f(n+6)+3*f(n+4) -(2*n^2+8*n+17) for n in (0..40)] # G. C. Greubel, Jul 24 2019 (GAP) F:=Fibonacci;; List([0..40], n-> F(n+6)+3*F(n+4) -(2*n^2+8*n+17)); # G. C. Greubel, Jul 24 2019 CROSSREFS Cf. A000032, A000045, A192232, A192744, A192951, A192971. Sequence in context: A027166 A126943 A209399 * A187428 A316878 A036368 Adjacent sequences:  A192971 A192972 A192973 * A192975 A192976 A192977 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)