The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187428 Expansion of q^(-5/24) * eta(q^3)^3 / eta(q)^4 in powers of q. 3
 1, 4, 14, 37, 93, 210, 454, 925, 1824, 3463, 6408, 11538, 20353, 35161, 59726, 99775, 164337, 266978, 428521, 679861, 1067415, 1659205, 2555617, 3902055, 5909867, 8881849, 13252334, 19637281, 28909989, 42297267, 61520450, 88976461, 127996994 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 FORMULA Euler transform of period 3 sequence [ 4, 4, 1, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 648^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A187427. G.f.: Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k)^4. a(n) ~ exp(sqrt(2*n)*Pi)/(12*sqrt(3)*n). - Vaclav Kotesovec, Sep 07 2015 EXAMPLE 1 + 4*x + 14*x^2 + 37*x^3 + 93*x^4 + 210*x^5 + 454*x^6 + 925*x^7 + ... q^5 + 4*q^29 + 14*q^53 + 37*q^77 + 93*q^101 + 210*q^125 + 454*q^149 + ... MATHEMATICA nmax = 40; CoefficientList[Series[Product[(1 - x^(3*k))^3 / (1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/24) *eta[q^3]^3/eta[q]^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 14 2018 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A)^4, n))} CROSSREFS Cf. A187427. Sequence in context: A126943 A209399 A192974 * A316878 A036368 A006071 Adjacent sequences:  A187425 A187426 A187427 * A187429 A187430 A187431 KEYWORD nonn AUTHOR Michael Somos, Mar 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)