login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192754
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
3
1, 6, 12, 23, 40, 68, 113, 186, 304, 495, 804, 1304, 2113, 3422, 5540, 8967, 14512, 23484, 38001, 61490, 99496, 160991, 260492, 421488, 681985, 1103478, 1785468, 2888951, 4674424, 7563380, 12237809, 19801194, 32039008, 51840207, 83879220, 135719432
OFFSET
0,2
COMMENTS
The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+5*n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
Conjecture: G.f.: ( 1+4*x ) / ( (x-1)*(x^2+x-1) ), partial sums of A022095. a(n) = A000071(n+3)+4*A000071(n+2). - R. J. Mathar, May 04 2014
a(n) = 8*Fibonacci(n) + 3*Lucas(n) - 5. - Greg Dresden, Oct 10 2020
MATHEMATICA
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192754 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192755 *)
LinearRecurrence[{2, 0, -1}, {1, 6, 12}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved