OFFSET
0,3
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
a(n) = a(n-1) + a(n-2) + A000045(n-5), a(0) = a(1) = 0.
a(0)=0, a(1)=0, a(2)=2, a(3)=1, a(n)=2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Mar 16 2015
MAPLE
A191830:= proc(n) option remember: if n<=1 then 0 else procname(n-1)+procname(n-2)+A000045(n-5) fi: end proc: with(combinat): A000045:=fibonacci: seq(A191830(n), n=0..30); # Johannes W. Meijer, Jun 27 2011
MATHEMATICA
CoefficientList[Series[x^2(2-3x)/(1-x-x^2)^2, {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, -2, -1}, {0, 0, 2, 1}, 40] (* Harvey P. Dale, Mar 16 2015 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, -2, 1, 2]^n*[0; 0; 2; 1])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Jun 17 2011
STATUS
approved