OFFSET
1,2
COMMENTS
For a background discussion of dispersions, see A191426.
...
Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here:
...
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c mod m)", (as in the Mathematica program below):
If f(n)=(n mod 3), then (a,b,c,a,b,c,a,b,c,...) is given by
a*f(n+2)+b*f(n+1)+c*f(n), so that "(a or b or c mod m)" is given by
a*f(n+2)+b*f(n+1)+c*f(n)+m*floor((n-1)/3)), for n>=1.
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
FORMULA
Conjecture: a(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12 = (8 + (3*A042965(n+1) - 2)*A000302(k))/12. - L. Edson Jeffery, Feb 14 2015
EXAMPLE
Northwest corner:
. 1 2 6 22 86 342 1366 5462 21846 87382
. 3 10 38 150 598 2390 9558 38230 152918 611670
. 4 14 54 214 854 3414 13654 54614 218454 873814
. 5 18 70 278 1110 4438 17750 70998 283990 1135958
. 7 26 102 406 1622 6486 25942 103766 415062 1660246
. 8 30 118 470 1878 7510 30038 120150 480598 1922390
. 9 34 134 534 2134 8534 34134 136534 546134 2184534
. 11 42 166 662 2646 10582 42326 169302 677206 2708822
. 12 46 182 726 2902 11606 46422 185686 742742 2970966
. 13 50 198 790 3158 12630 50518 202070 808278 3233110
MATHEMATICA
(* Program generates the dispersion array T of the increasing sequence f[n] *)
r = 40; r1 = 12; c = 40; c1 = 12;
f[n_] := 4*n-2
Table[f[n], {n, 1, 30}] (* A016825 *)
mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
rows = {NestList[f, 1, c]};
Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
t[i_, j_] := rows[[i, j]];
TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191668 *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191668 *)
(* Conjectured: *) Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]] (* L. Edson Jeffery, Feb 14 2015 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jun 11 2011
STATUS
approved