login
A191136
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x+1 are in a.
6
1, 4, 5, 13, 16, 17, 21, 40, 49, 52, 53, 64, 65, 69, 85, 121, 148, 157, 160, 161, 193, 196, 197, 208, 209, 213, 256, 257, 261, 277, 341, 364, 445, 472, 481, 484, 485, 580, 589, 592, 593, 625, 628, 629, 640, 641, 645, 769, 772, 773, 784, 785, 789, 832, 833, 837, 853, 1024, 1025, 1029, 1045, 1093, 1109, 1336, 1365, 1417, 1444
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 1; j = 4; k = 1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191136 *)
b = (a - 1)/3; c = (a - 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191196 *)
e = Intersection[c, r] (* A191197 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191136 n = a191136_list !! (n-1)
a191136_list = f $ singleton 1
where f s = m : (f $ insert (3*m+1) $ insert (4*m+1) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A087882 A338544 A191196 * A083709 A091183 A372122
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved