login
A191137
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x+2 are in a.
4
1, 4, 6, 13, 18, 19, 26, 40, 54, 55, 58, 74, 78, 79, 106, 121, 162, 163, 166, 175, 218, 222, 223, 234, 235, 238, 298, 314, 318, 319, 364, 426, 486, 487, 490, 499, 526, 650, 654, 655, 666, 667, 670, 702, 703, 706, 715, 874, 890, 894, 895, 938, 942, 943, 954, 955, 958, 1093, 1194, 1258, 1274, 1278, 1279, 1458, 1459, 1462, 1471
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = 1; j = 4; k = 2; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191137 *)
b = (a - 1)/3; c = (a - 2)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191198 *)
e = Intersection[c, r] (* A191199 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191137 n = a191137_list !! (n-1)
a191137_list = f $ singleton 1
where f s = m : (f $ insert (3*m+1) $ insert (4*m+2) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A063186 A345984 A191198 * A247284 A069061 A373945
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2011
STATUS
approved