login
A190999
a(n) = 2^(n^2)*(2^(2*n+1) - 1).
1
1, 14, 496, 65024, 33488896, 68685922304, 562881233944576, 18446181123756130304, 2417833192485184639860736, 1267648182376590172238353793024, 2658454723919231517578212623857483776, 22300742540074631571703972465034240945291264
OFFSET
0,2
COMMENTS
First differences of A002416.
LINKS
MAPLE
a:= n-> (f-> f(n+1)-f(n))(j->2^(j^2)):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 31 2019
MATHEMATICA
A002416 = Table[2^(n^2), {n, 0, 20}]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A190999 = GetDiff[A002416]
PROG
(PARI) a(n) = 2^(n^2)*(2^(2*n+1) - 1) \\ Georg Fischer, Jan 31 2019
(Sage) [2^(n^2)*(2^(2*n+1) - 1) for n in (0..20)] # Georg Fischer, Jan 31 2019
CROSSREFS
Cf. A002416.
Sequence in context: A251867 A240411 A024299 * A320288 A344114 A233014
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Dec 08 2018, with new offset.
Programs and offset in b-file modified by Georg Fischer, Jan 31 2019.
STATUS
approved