login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 2^(n^2)*(2^(2*n+1) - 1).
1

%I #49 Jan 31 2019 18:39:35

%S 1,14,496,65024,33488896,68685922304,562881233944576,

%T 18446181123756130304,2417833192485184639860736,

%U 1267648182376590172238353793024,2658454723919231517578212623857483776,22300742540074631571703972465034240945291264

%N a(n) = 2^(n^2)*(2^(2*n+1) - 1).

%C First differences of A002416.

%H Muniru A Asiru, <a href="/A190999/b190999.txt">Table of n, a(n) for n = 0..49</a>

%p a:= n-> (f-> f(n+1)-f(n))(j->2^(j^2)):

%p seq(a(n), n=0..12); # _Alois P. Heinz_, Jan 31 2019

%t A002416 = Table[2^(n^2), {n, 0, 20}]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A190999 = GetDiff[A002416]

%o (PARI) a(n) = 2^(n^2)*(2^(2*n+1) - 1) \\ _Georg Fischer_, Jan 31 2019

%o (Sage) [2^(n^2)*(2^(2*n+1) - 1) for n in (0..20)] # _Georg Fischer_, Jan 31 2019

%Y Cf. A002416.

%K nonn,easy

%O 0,2

%A _Vladimir Joseph Stephan Orlovsky_, Jun 18 2011

%E Entry revised by _N. J. A. Sloane_, Dec 08 2018, with new offset.

%E Programs and offset in b-file modified by _Georg Fischer_, Jan 31 2019.