login
A190912
Partial sums of pentanacci numbers (A000322).
1
1, 2, 3, 4, 5, 10, 19, 36, 69, 134, 263, 516, 1013, 1990, 3911, 7688, 15113, 29710, 58407, 114824, 225737, 443786, 872459, 1715208, 3372009, 6629194, 13032651, 25621516, 50370573, 99025938, 194679867, 382730540, 752428429, 1479235342, 2908100111, 5717174284
OFFSET
1,2
FORMULA
a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=10, a(n)=2*a(n-1)-a(n-6) [From Harvey P. Dale, May 23 2011]
G.f. x*( 1-x^2-2*x^3-3*x^4 ) / ( (x-1)*(x^5+x^4+x^3+x^2+x-1) ). - R. J. Mathar, May 26 2011
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, 50]] (* or *) LinearRecurrence[{2, 0, 0, 0, 0, -1}, {1, 2, 3, 4, 5, 10}, 50](* Harvey P. Dale, May 23 2011 *)
CROSSREFS
Sequence in context: A099161 A369592 A033077 * A306108 A282033 A111665
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, May 23 2011
STATUS
approved