

A282033


An example of a collection of five sets (based on U.S. coinage) which is not an additive number system.


2



1, 2, 3, 4, 5, 10, 20, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The five sets are the following:
1, 2, 3, 4;
5;
10, 20;
25, 50, 75;
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, ...
(the last set being infinite).
In contrast to A282032 this is not an additive number system because 26 for example can be represented in two ways as a sum of numbers from distinct sets (26 = 1+5+20 = 1+25).


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Michael Maltenfort, Characterizing Additive Systems, The American Mathematical Monthly 124.2 (2017): 132148. See Fig. 3.
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + 4*x^5 + 5*x^6  5*x^7 + 20*x^8 + 75*x^11) / (1  x)^2.
a(n) = 2*a(n1)  a(n2) for n>12.
(End)


MATHEMATICA

LinearRecurrence[{2, 1}, {1, 2, 3, 4, 5, 10, 20, 25, 50, 75, 100, 200, 300, 400}, 50] (* or *) CoefficientList[Series[x (1+4x^5+5x^65x^7+ 20x^8+ 75x^11)/ (1x)^2, {x, 0, 50}], x] (* Harvey P. Dale, Aug 04 2021 *)


PROG

(PARI) Vec(x*(1 + 4*x^5 + 5*x^6  5*x^7 + 20*x^8 + 75*x^11) / (1  x)^2 + O(x^50)) \\ Colin Barker, Apr 16 2020


CROSSREFS

Cf. A032174, A282032, A282034 are legitimate examples of additive number systems.
Sequence in context: A033077 A190912 A306108 * A111665 A111666 A080475
Adjacent sequences: A282030 A282031 A282032 * A282034 A282035 A282036


KEYWORD

nonn,tabf,easy


AUTHOR

N. J. A. Sloane, Feb 20 2017


STATUS

approved



