login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190313
Number of scalene triangles, distinct up to congruence, on an n X n grid (or geoboard).
3
0, 0, 3, 18, 57, 137, 280, 517, 863, 1368, 2069, 3007, 4218, 5774, 7704, 10109, 13025, 16523, 20671, 25567, 31274, 37891, 45529, 54213, 64082, 75320, 87901, 102014, 117736, 135217, 154606, 176024, 199502, 225290, 253485, 284305, 317811, 354282, 393618, 436202, 482332
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Geoboard.
Eric Weisstein's World of Mathematics, Scalene Triangle.
FORMULA
a(n) = A028419(n) - A189978(n).
MATHEMATICA
q[n_] :=
Module[{sqDist, t0, t1, t2, t3},
(*Squared distances*)
sqDist = {p_, q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2;
(*Triads of points*)
t0 = Subsets[Range[0, n^2 - 1], {3, 3}];
(* Exclude collinear vertices *)
t1 = Select[t0,
Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[
3]]}]] != 0 &];
(*Calculate sides*)
t2 = Map[{#,
Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /.
sqDist]} &, t1];
(*Exclude not-scalenes*)
t2 = Select[
t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2,
3]] != #[[2, 1]] &];
(* Find groups of congruent triangles *)
t3 = GatherBy[Range[Length[t2]], t2[[#, 2]] &];
Return[Length[t3]];
];
Map[q[#] &, Range[10]] (* César Eliud Lozada, Mar 26 2021 *)
CROSSREFS
Sequence in context: A222204 A027289 A061317 * A139362 A012763 A006011
KEYWORD
nonn
AUTHOR
Martin Renner, May 08 2011
STATUS
approved