login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028419 Congruence classes of triangles which can be drawn using lattice points in n X n grid as vertices. 11
0, 1, 8, 29, 79, 172, 333, 587, 963, 1494, 2228, 3195, 4455, 6050, 8032, 10481, 13464, 17014, 21235, 26190, 31980, 38666, 46388, 55144, 65131, 76449, 89132, 103337, 119184, 136757, 156280, 177796, 201430, 227331, 255668, 286606, 320294, 356884, 396376, 439100, 485427, 535049, 588457, 645803 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Ron Knott, Table of n, a(n) for n = 0..60

D. Rusin, Lattice Problem (Triangles) [Dead link]

D. Rusin, Lattice Problem (Triangles) [Cached copy]

MAPLE

a:=proc(n) local TriangleSet, i, j, k, l, A, B, C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet), sort([sqrt(A), sqrt(B), sqrt(C)])}: fi: od: od: od: od: return(nops(TriangleSet)); end: # Martin Renner, May 03 2011

CROSSREFS

Cf. A028492, A189979, A190021, A190022, A189978, A190313, A189978, A190313.

Sequence in context: A106113 A299260 A290312 * A046664 A055536 A131438

Adjacent sequences:  A028416 A028417 A028418 * A028420 A028421 A028422

KEYWORD

nonn

AUTHOR

David J. Rusin

EXTENSIONS

More terms from Chris Cole (chris(AT)questrel.com), Jun 28 2003

a(36)-a(39) from Martin Renner, May 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 03:29 EST 2018. Contains 318049 sequences. (Running on oeis4.)