login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190252
Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-sqrt(1-2*x-3*x^2-4*x^3))/(2*x^2*(1+x)).
4
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 12, 14, 9, 4, 1, 31, 38, 28, 14, 5, 1, 83, 106, 84, 48, 20, 6, 1, 227, 301, 252, 157, 75, 27, 7, 1, 634, 864, 758, 504, 265, 110, 35, 8, 1, 1799, 2508, 2283, 1602, 906, 417, 154, 44, 9, 1, 5171, 7348, 6897, 5056, 3035, 1512, 623, 208, 54, 10, 1, 15027, 21699, 20903, 15894, 10020, 5324, 2387, 894, 273, 65, 11, 1
OFFSET
0,4
COMMENTS
First column = A071359(n+1).
Central coefficients = A190253.
Row sums = A190254.
Diagonal sums = A190255.
LINKS
FORMULA
T(n,k) = [x^(n-k)]g(x)^(k+1), where g(x) = (1-x-sqrt(1-2*x-3*x^2-4*x^3)) / (2*x^2*(1+x)).
T(n,k) = sum(i=0..(n-k)/2, binomial(2*i+k,i)*(k+1)/(i+k+1) * sum(j=0..i, binomial(i,j)*binomial(n-j,2*i+k) ) ).
Recurrence: T(n+2,k+1) = T(n+1,k) + T(n+1,k+1) + T(n+1,k+2) + T(n,k+2).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
12, 14, 9, 4, 1;
31, 38, 28, 14, 5, 1;
83, 106, 84, 48, 20, 6, 1;
227, 301, 252, 157, 75, 27, 7, 1;
634, 864, 758, 504, 265, 110, 35, 8, 1;
...
MATHEMATICA
Flatten[Table[Sum[Binomial[2i+k, i](k+1)/(i+k+1) Sum[Binomial[i, j] Binomial[n-j, 2i+k], {j, 0, i}], {i, 0, (n-k)/2}], {n, 0, 12}, {k, 0, n}]]
PROG
(Maxima) create_list(sum(binomial(2*i+k, i)*(k+1)/(i+k+1)*sum( binomial(i, j)*binomial(n-j, 2*i+k), j, 0, i), i, 0, (n-k)/2), n, 0, 12, k, 0, n);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emanuele Munarini, May 06 2011
STATUS
approved