

A079222


Triangle T(n,d) (listed rowwise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of nedge general plane trees with root degree d that are fixed by the sixfold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).


8



1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 0, 1, 38, 42, 28, 2, 0, 1, 111, 124, 90, 0, 0, 6, 1, 332, 379, 285, 5, 0, 27, 0, 1, 1029, 1178, 914, 0, 0, 110, 0, 0, 1, 3232, 3742, 2955, 14, 1, 429, 0, 0, 0, 1, 10374, 12024, 9666, 0, 0, 1614, 0, 0, 0, 0, 1, 33679, 39200, 31853, 42, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Note: the counts given here are inclusive, i.e. T(n,d) includes also the counts A079218(n,d) and A079219(n,d).


LINKS

Table of n, a(n) for n=0..70.


MAPLE

[seq(A079222(n), n=0..119)]; A079222 := n > PFixedByA057511(A003056(n)+1, 6, A002262(n)+1);


CROSSREFS

The row sums equal to the left edge shifted left once = A079227 = sixth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217A079221 and A003056 & A002262.
Sequence in context: A190215 A190252 A141751 * A033184 A171567 A110488
Adjacent sequences: A079219 A079220 A079221 * A079223 A079224 A079225


KEYWORD

nonn,tabl


AUTHOR

Antti Karttunen Jan 03 2002


STATUS

approved



