The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190149 Even numbers n (written in binary) such that in base 2 lunar arithmetic, the sum of the divisors of n is a number containing a 0 (in binary). 3
 10010, 100010, 100110, 110010, 1000010, 1000100, 1000110, 1001010, 1001110, 1010010, 1100010, 1100110, 1110010, 10000010, 10000100, 10000110, 10001010, 10001100, 10001110, 10010010, 10010110, 10011010, 10011110, 10100010, 10100110, 10110010, 11000010, 11000100, 11000110, 11001010, 11001110, 11010010, 11100010, 11100110, 11110010, 100000010, 100000100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS As remarked in A188548, if n is even then most of the time A188548(n) = 111...111 that is, a number of the form 2^k-1). This sequence lists the exceptions. LINKS D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing] D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8. EXAMPLE In base 2 lunar arithmetic, the divisors of 10010 are 1, 10, 1001 and 10010, whose sum is 11011. CROSSREFS Cf. A188548, A067399. See A190150 and A190151 for the base-10 representation of these numbers. Sequence in context: A176931 A023335 A096211 * A052095 A033533 A146505 Adjacent sequences:  A190146 A190147 A190148 * A190150 A190151 A190152 KEYWORD nonn,base AUTHOR N. J. A. Sloane, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 20:55 EDT 2020. Contains 333363 sequences. (Running on oeis4.)