OFFSET
1,2
COMMENTS
See A048888 for the definition of OR-numbral arithmetic. The example shows that this sequence is not multiplicative.
In other words, number of lunar divisors of n in base 2.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..1024
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
EXAMPLE
a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15].
If written as a triangle with rows of lengths 1,2,4,8,16,...:
1,
2, 2,
3, 2, 4, 3,
4, 2, 4, 2, 6, 2, 6, 5,
5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8,
6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14,
...,
the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - N. J. A. Sloane, Mar 05 2011
CROSSREFS
A079500 is the subsequence a(2^k-1). - N. J. A. Sloane, Feb 23 2011
See A188548 for the sum of the divisors.
KEYWORD
nonn
AUTHOR
Jens Voß, Jan 23 2002
STATUS
approved