login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A067399
Number of divisors of n in OR-numbral arithmetic.
11
1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, 7, 2, 4, 2, 6, 2, 4, 2, 8, 3, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 9, 5, 4, 2, 8, 2, 8, 4, 6, 2, 8, 6, 12, 2, 4, 4, 6
OFFSET
1,2
COMMENTS
See A048888 for the definition of OR-numbral arithmetic. The example shows that this sequence is not multiplicative.
In other words, number of lunar divisors of n in base 2.
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
EXAMPLE
a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15].
If written as a triangle with rows of lengths 1,2,4,8,16,...:
1,
2, 2,
3, 2, 4, 3,
4, 2, 4, 2, 6, 2, 6, 5,
5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8,
6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14,
...,
the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - N. J. A. Sloane, Mar 05 2011
CROSSREFS
A079500 is the subsequence a(2^k-1). - N. J. A. Sloane, Feb 23 2011
See A188548 for the sum of the divisors.
Sequence in context: A343541 A060025 A368572 * A106737 A359360 A323164
KEYWORD
nonn
AUTHOR
Jens Voß, Jan 23 2002
STATUS
approved