login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189991
Numbers with prime factorization p^4*q^4.
6
1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625, 54700816, 57289761, 68574961, 74805201
OFFSET
1,1
COMMENTS
The primes p and q must be distinct, or else the product has factorization p^8 (or q^8, for that matter).
FORMULA
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 = (A085964^2 - A085968)/2 = 0.000933..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
MATHEMATICA
lst = {}; Do[If[Sort[Last/@FactorInteger[n]] == {4, 4}, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Orlovsky *)
lim = 10^8; pMax = PrimePi[(lim/16)^(1/4)]; Select[Union[Flatten[Table[Prime[i]^4 Prime[j]^4, {i, 2, pMax}, {j, i - 1}]]], # <= lim &] (* Alonso del Arte, May 03 2011 *)
With[{nn=30}, Take[Union[Times@@@(Subsets[Prime[Range[nn]], {2}]^4)], nn]] (* Harvey P. Dale, Mar 05 2015 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, lim^(1/8), t=p^4; forprime(q=p+1, (lim\t)^(1/4), listput(v, t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved