login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189991 Numbers with prime factorization p^4*q^4. 4
1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625, 54700816, 57289761, 68574961, 74805201 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The primes p and q must be distinct, or else the product has factorization p^8 (or q^8, for that matter).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Will Nicholes, Prime Signatures

Index to sequences related to prime signature

MATHEMATICA

lst = {}; Do[If[Sort[Last/@FactorInteger[n]] == {4, 4}, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Orlovsky *)

lim = 10^8; pMax = PrimePi[(lim/16)^(1/4)]; Select[Union[Flatten[Table[Prime[i]^4 Prime[j]^4, {i, 2, pMax}, {j, i - 1}]]], # <= lim &] (* Alonso del Arte, May 03 2011 *)

With[{nn=30}, Take[Union[Times@@@(Subsets[Prime[Range[nn]], {2}]^4)], nn]] (* Harvey P. Dale, Mar 05 2015 *)

PROG

(PARI) list(lim)=my(v=List(), t); forprime(p=2, lim^(1/8), t=p^4; forprime(q=p+1, (lim\t)^(1/4), listput(v, t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

CROSSREFS

Cf. A137488, A179671, A189990.

Sequence in context: A320893 A276282 A137488 * A250438 A221006 A016864

Adjacent sequences:  A189988 A189989 A189990 * A189992 A189993 A189994

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, May 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)