login
A016864
a(n) = (5*n + 1)^4.
2
1, 1296, 14641, 65536, 194481, 456976, 923521, 1679616, 2825761, 4477456, 6765201, 9834496, 13845841, 18974736, 25411681, 33362176, 43046721, 54700816, 68574961, 84934656, 104060401, 126247696
OFFSET
0,2
LINKS
Eric Weisstein's MathWorld, Polygamma Function.
Wikipedia, Polygamma Function.
FORMULA
Sum_{n>=0} 1/a(n) = polygamma(3, 1/5)/3750. - Amiram Eldar, Oct 02 2020
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Oct 02 2020
G.f.: -(1+1291*x+8171*x^2+5281*x^3+256*x^4)/(-1+x)^5. - Wesley Ivan Hurt, Oct 02 2020
EXAMPLE
a(0) = (5*0 + 1)^4 = 1.
MATHEMATICA
Table[(5*n + 1)^4, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020*)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 1296, 14641, 65536, 194481}, 30] (* Harvey P. Dale, Jul 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved