login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188431 The number of n-full sets, F(n). 17
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 10, 13, 14, 17, 20, 25, 28, 34, 40, 46, 54, 62, 69, 80, 90, 102, 115, 131, 144, 167, 186, 213, 239, 273, 304, 349, 388, 441, 495, 563, 625, 710, 790, 890, 990, 1114, 1232, 1387, 1530, 1713, 1894, 2119, 2330, 2605, 2866, 3192, 3512, 3910, 4289, 4774, 5237, 5809, 6377, 7068, 7739 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. Then F(n) denotes the number of n-full sets.

Also the number of distinct and complete partitions of n, by definition, which are counted by A000009 and A126796. - George Beck, Nov 06 2017

An integer partition of n is complete (see also A325781) if every number from 0 to n is the sum of some submultiset of the parts. The Heinz numbers of these partitions are given by A325986. - Gus Wiseman, May 31 2019

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..1000 from Reinhard Zumkeller)

Mohammad Saleh Dinparvar, Python program

L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.

Arash Sal Moslehian, JavaScript p5 program for three different algorithms

FORMULA

F(n) = Sum_(i=L(n) .. U(n), F(n,i)), where F(n,i) = Sum_(j=L(n-i) .. min(U(n-i),i-1), F(n-i,j) ) and L(n), U(n) are defined in A188429 and A188430, respectively.

G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1+x^k), with a(0)=1. - Paul D. Hanna, Mar 08 2012

a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(3/4), where c = 0.03316508... - Vaclav Kotesovec, Oct 21 2019

EXAMPLE

a(26) = 10, because there are 10 26-full sets: {1,2,4,5,6,8}, {1,2,3,5,7,8}, {1,2,3,5,6,9}, {1,2,3,4,7,9}, {1,2,3,4,6,10}, {1,2,3,4,5,11}, {1,2,4,8,11}, {1,2,4,7,12}, {1,2,4,6,13}, {1,2,3,7,13}.

G.f.: 1 = 1/(1+x) + 1*x/((1+x)*(1+x^2)) + 0*x^2/((1+x)*(1+x^2)*(1+x^3)) + 1*x^3/((1+x)*(1+x^2)*(1+x^3)*(1+x^4)) +...+ a(n)*x^n / Product_{k=1..n+1} (1+x^k) +...

MAPLE

sums:= proc(s) local i, m;

          m:= max(s[]);

         `if`(m<1, {}, {m, seq([i, i+m][], i=sums(s minus {m}))})

       end:

a:= proc(n) local b;

      b:= proc(i, s) local si;

            if i=1 then `if`(sums(s)={$1..n}, 1, 0)

          else si:= s union {i};

               b(i-1, s)+ `if`(max(sums(si)[])>n, 0, b(i-1, si))

            fi

          end; b(n, {1})

    end:

seq(a(n), n=1..40);  # Alois P. Heinz, Apr 03 2011

# second Maple program:

b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1,

      b(n, i-1)+`if`(i>n or i>n-i+1, 0, b(n-i, i-1))))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..80);  # Alois P. Heinz, May 20 2017

MATHEMATICA

Sums[s_] := Sums[s] = With[{m = Max[s]}, If[m < 1, {}, Union @ Flatten @ Join[{m}, Table[{i, i + m}, {i, Sums[s ~Complement~ {m}]}]]]];

a[n_] := Module[{b}, b[i_, s_] := b[i, s] = Module[{si}, If[i == 1, If[Sums[s] == Range[n], 1, 0], si = s ~Union~ {i}; b[i-1, s] + If[Max[ Sums[si]] > n, 0, b[i - 1, si]]]]; b[n, {1}]];

Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 80}] (* Jean-Fran├žois Alcover, Apr 12 2017, after Alois P. Heinz *)

Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Union[Total/@Union[Subsets[#]]]==Range[0, n]&]], {n, 30}] (* Gus Wiseman, May 31 2019 *)

PROG

(PARI) /* As coefficients in g.f. */

{a(n)=local(A=[1]); for(i=1, n+1, A=concat(A, 0); A[#A]=polcoeff(1 - sum(m=1, #A, A[m]*x^m/prod(k=1, m, 1+x^k +x*O(x^#A) )), #A) ); A[n+1]}

for(n=0, 50, print1(a(n), ", ")) /* Paul D. Hanna, Mar 06 2012 */

(Haskell)

import Data.MemoCombinators (memo2, integral, Memo)

a188431 n = a188431_list !! (n-1)

a188431_list = map

   (\x -> sum [fMemo x i | i <- [a188429 x .. a188430 x]]) [1..] where

   fMemo = memo2 integral integral f

   f _ 1 = 1

   f m i = sum [fMemo (m - i) j |

                j <- [a188429 (m - i) .. min (a188430 (m - i)) (i - 1)]]

-- Reinhard Zumkeller, Aug 06 2015

CROSSREFS

Cf. A188429, A188430, A126796.

Cf. A002033, A103295, A108917, A276024, A325763, A325765, A325781, A325782, A325788, A325986, A325790, A325791.

Sequence in context: A061498 A106029 A260311 * A105153 A000924 A306911

Adjacent sequences:  A188428 A188429 A188430 * A188432 A188433 A188434

KEYWORD

nonn

AUTHOR

Madjid Mirzavaziri, Mar 31 2011

EXTENSIONS

More terms from Alois P. Heinz, Apr 03 2011

a(0)=1 prepended by Alois P. Heinz, May 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 05:10 EDT 2022. Contains 355087 sequences. (Running on oeis4.)