login
A106029
a(n) is the number of orbits under the action of GL_2[Z] on the primitive binary quadratic forms of discriminant D, where D=m if m=1 (mod 4), D=4*m otherwise and m<0 is the n-th squarefree number.
0
1, 1, 1, 2, 2, 1, 2, 1, 2, 3, 2, 3, 1, 4, 2, 2, 4, 4, 4, 2, 4, 3, 2, 2, 4, 3, 5, 4, 1, 3, 3, 2, 4, 3, 4, 2, 2, 4, 5, 6, 6, 1, 6, 4, 4, 3, 6, 6, 4, 3, 3, 2, 4, 6, 4, 7, 2, 4, 5, 5, 3
OFFSET
1,4
COMMENTS
A000924 is the same except it is under the action of SL_2[Z].
LINKS
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Jens Jonasson, Classes of integral binary quadratic forms, Master's thesis (2001), Appendix B.
EXAMPLE
m = -1, -2, -3, -5, -6, -7, -10, -11, -13, ...
with corresponding discriminant
D = -4, -8, -3, -20, -24, -7, -40, -11, -52, ....
CROSSREFS
Cf. A000924.
Sequence in context: A373121 A061498 A373823 * A260311 A188431 A105153
KEYWORD
nonn
AUTHOR
Steven Finch, May 05 2005
STATUS
approved