OFFSET
1,45
COMMENTS
a(5n) >= 1 as d=5 contributes to the count.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,8) - (1 - gamma)/8 = -0.131189..., gamma(5,8) = -(psi(5/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
EXAMPLE
a(13) = 1 because the divisor d=13 is 8+5 == 5 (mod 8).
MAPLE
sigmamr := proc(n, m, r) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d, m) = r then a := a+1 ; end if; end do: a; end proc:
A188171 := proc(n) sigmamr(n, 8, 5) ; end proc:
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Mod[#, 8] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
PROG
(PARI) A188171(n) = sumdiv(n, d, (5==(d%8))); \\ Antti Karttunen, Jul 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 23 2011
STATUS
approved