The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242830 For p = prime(n), a(n) = number of bases 1 < b < p such that b^(p-1) == 1 (mod p^2). 12
 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 3, 0, 0, 1, 1, 1, 1, 0, 2, 0, 3, 0, 2, 2, 2, 2, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 4, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(n) > 0 if and only if p is in A134307. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE A242830:= proc(n) local p;   p:= ithprime(n);   numboccur(1, [seq(b &^ (p-1) mod p^2, b=2..p-1)]); end proc; seq(A242830(n), n=1..1000); # Robert Israel, Jul 16 2014 PROG (PARI) i=0; forprime(p=2, 10^3, a=2; while(a

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 13:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)