login
A187397
Expansion of -2*x^4 *(3*x^13 +2*x^12 +x^11 -6*x^10 -10*x^9 -6*x^8 +x^7 +7*x^6 +5*x^5 -x^4 -8*x^3 -11*x^2 -8*x -5) / ((x -1)^4 *(x +1)^2 *(x^2 +1)^2 *(x^2 +x +1)^2).
4
0, 0, 0, 0, 10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426, 490, 590, 698, 780, 904, 1036, 1176, 1326, 1484, 1650, 1874, 2060, 2254, 2512, 2782, 3006, 3300, 3606, 3924, 4256, 4600, 4956, 5398, 5782, 6178, 6666, 7170, 7608, 8144
OFFSET
0,5
COMMENTS
In contrast, the number of distinct lines passing through 4 or more points in an n X n grid is given by 0, 0, 0, 10, 16, 22, 44, 74, 92, 154, 232, 326, 436, 562, 704, 998, 1268,.. = A018808(n) -A018809(n) -A018810(n) = A225606(n) -A018810(n). - David W. Wilson, Aug 05 2013
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 2, 2, 0, -1, -4, -1, 0, 2, 2, 0, 0, -1).
MATHEMATICA
CoefficientList[ Series[ 2x^4 (5 + 8x + 11x^2 + 8x^3 + x^4 - 5x^5 - 7x^6 - x^7 + 6x^8 + 10x^9 + 6x^10 - x^11 - 2x^12 - 3x^13)/((-1 + x)^4 (1 + x)^2 (1 + x^2)^2 (1 + x + x^2)^2), {x, 0, 43}], x] (* or *) LinearRecurrence[{0, 0, 2, 2, 0, -1, -4, -1, 0, 2, 2, 0, 0, -1}, {10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426}, 40] (* Robert G. Wilson v, Feb 17 2014 *)
CROSSREFS
Sequence in context: A264721 A136799 A055987 * A152138 A109100 A155151
KEYWORD
nonn,easy
AUTHOR
Sean A. Irvine, Mar 23 2011
EXTENSIONS
Definition replaced with Colin Barker's g.f. by R. J. Mathar, Aug 06 2013
Offset changed from 1 to 0 and a(0)=0 added by Vincenzo Librandi, Feb 19 2014
STATUS
approved