login
A187395
a(n) = floor(r*n), where r = 4 + sqrt(10); complement of A187396.
3
7, 14, 21, 28, 35, 42, 50, 57, 64, 71, 78, 85, 93, 100, 107, 114, 121, 128, 136, 143, 150, 157, 164, 171, 179, 186, 193, 200, 207, 214, 222, 229, 236, 243, 250, 257, 265, 272, 279, 286, 293, 300, 307, 315, 322, 329, 336, 343, 350, 358, 365, 372, 379, 386, 393, 401, 408, 415, 422, 429, 436, 444, 451, 458, 465, 472, 479, 487, 494, 501
OFFSET
1,1
COMMENTS
A187395 and A187396 are the Beatty sequences based on r = 4 + sqrt(10) and s = -2 + sqrt(10); 1/r + 1/s = 1.
FORMULA
a(n) = floor(r*n), where r = 4 + sqrt(10).
MATHEMATICA
r=4+10^(1/2); s=-2+10^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187395 *)
Table[Floor[s*n], {n, 1, 80}] (* A187396 *)
PROG
(Python)
from sympy import integer_nthroot
def A187395(n): return 4*n+integer_nthroot(10*n**2, 2)[0] # Chai Wah Wu, Mar 16 2021
CROSSREFS
Cf. A187396.
Sequence in context: A206717 A043393 A028437 * A033019 A031483 A020334
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
EXTENSIONS
Edited by Clark Kimberling, Mar 17 2021
STATUS
approved