login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186928 Greater of two consecutive 3-smooth numbers having no common divisors. 3
2, 3, 4, 9, 32, 256, 2187, 531441, 134217728, 70368744177664, 36893488147419103232, 19383245667680019896796723, 713623846352979940529142984724747568191373312, 13803492693581127574869511724554050904902217944340773110325048447598592 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = A003586(A186771(n) + 1); A186927(n) = A003586(A186771(n));

also a subsequence of A006899: all terms are either powers of 2 or of 3.

LINKS

Table of n, a(n) for n=1..14.

MATHEMATICA

smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j - 1]^Take[aa, j - 1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; sn = smoothNumbers[3, 10^100]; Reap[For[i = 1, i <= Length[sn] - 1, i++, If[CoprimeQ[sn[[i]], sn[[i + 1]]], Sow[sn[[i + 1]]]]]][[2, 1]] (* Jean-Fran├žois Alcover, Nov 11 2016 *)

CROSSREFS

Cf. A186711.

Sequence in context: A059972 A245930 A086432 * A076018 A076017 A245366

Adjacent sequences:  A186925 A186926 A186927 * A186929 A186930 A186931

KEYWORD

nonn

AUTHOR

Charles R Greathouse IV and Reinhard Zumkeller, Mar 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 11:07 EST 2016. Contains 278776 sequences.