

A186926


Maximal number of isosceles right triangles in a set of n points in the plane.


0



1, 4, 8, 11, 15, 20, 28, 35, 43, 52, 64, 74, 85, 97, 112, 124, 139, 156, 176, 192, 210, 229, 252
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,2


COMMENTS

The values for n >= 10 are only conjectural.


LINKS

Table of n, a(n) for n=3..25.
Bernardo M. Abrego, Silvia FernandezMerchant, David B. Roberts, On the maximum number of isosceles right triangles in a finite point set, arXiv:1102.5347 [math.CO], 2011.
P. Erdős and G. Purdy, Some extremal problems in geometry, Journal of Combinatorial Theory 10 (1971), 246252.
P. Erdős and G. Purdy, Some extremal problems in geometry III, Proc. 6th Southeastern Conference in Combinatorics, Graph Theory and Comp. (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 291308. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975.
P. Erdős and G. Purdy, Some extremal problems in geometry IV., Proc. 7th Southeastern Conference in Combinatorics, Graph Theory and Comp. (Louisiana State Univ., Baton Rouge, La., 1976), pp. 3.


CROSSREFS

Sequence in context: A311053 A311054 A311055 * A311056 A311057 A054736
Adjacent sequences: A186923 A186924 A186925 * A186927 A186928 A186929


KEYWORD

nonn,hard


AUTHOR

Jonathan Vos Post, Mar 01 2011


EXTENSIONS

Edited by N. J. A. Sloane, Mar 04 2011


STATUS

approved



