

A186083


Values taken by A161903, sorted and duplicates removed.


2



0, 3, 6, 7, 12, 13, 14, 15, 24, 25, 26, 27, 28, 30, 31, 48, 49, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109, 110, 111, 112, 115, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 192, 193, 194, 195, 196, 198, 199
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The sequence contains 2k if and only if it contains k.
If the binary expansion of n has k bits, then A161903(n) will have k+1 bits. Thus, to determine if a number with m bits belongs to the sequence, it is sufficient to check A161903(i) up to i=2^(m1)1.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1309
Index entries for sequences related to cellular automata
Eric Weisstein's World of Mathematics, Rule 110


MATHEMATICA

f[n_] := FromDigits[Drop[Part[CellularAutomaton[110, {IntegerDigits[n, 2], 0}], 1], 1], 2]; Union[Table[f[n], {n, 0, 2047}]]


CROSSREFS

Cf. A161903.
Sequence in context: A141742 A004755 A004760 * A093906 A152829 A325430
Adjacent sequences: A186080 A186081 A186082 * A186084 A186085 A186086


KEYWORD

nonn


AUTHOR

Ben Branman, Feb 12 2011


STATUS

approved



