login
A186082
Numbers n such that log(A156668(n)*(1 + n mod 2))/n^2 is smaller than for any prior n.
2
1, 2, 3, 5, 10, 13, 18, 31, 49, 98, 116, 232, 281, 397, 678, 1075, 2150, 3225, 4300, 5375, 5772, 6847, 7922, 8997, 17994, 19069
OFFSET
1,2
LINKS
David Broadhurst, Table of n for n = 1..1000
Kevin Acres and David Broadhurst, Rational points on y^2 = x^3 + 10*x^2 + 5*x
EXAMPLE
[1, 0.6931471805599453094172321215]
[2, 0.5994738181995926360154858945]
[3, 0.5898075219334671955890478209]
[5, 0.5866039232314788114510488867]
[10, 0.5865963134453746145925657102]
[13, 0.5864356249925781873672553233]
[18, 0.5864232678262123920533476064]
PROG
(PARI)
T(k)={
local(P=ellpow(ellinit([0, 10, 0, 5, 0]), [-1, 2], k), s, t);
s=P[1]^2;
t=abs(numerator(P[2]^4/s-80*s));
while(t%2==0, t=t/2; );
t;
}
M(k)=1+k%2;
V(k)=log(M(k)*T(k))/k^2;
{
lowest=1;
for(i=1, 20000,
l=V(i);
if(l<lowest,
lowest=l;
print([i, l]);
);
);
}
CROSSREFS
Cf. A156668.
Sequence in context: A005677 A162404 A084760 * A103746 A071848 A268176
KEYWORD
nonn
AUTHOR
Kevin T. Acres, Feb 12 2011
STATUS
approved