|
|
A186080
|
|
Fourth powers that are palindromic in base 10.
|
|
3
|
|
|
0, 1, 14641, 104060401, 1004006004001, 10004000600040001, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001, 100000004000000060000000400000001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
See A056810 (the main entry for this problem) for further information, including the search limit. - N. J. A. Sloane, Mar 07 2011.
Conjecture: If k^4 is a palindrome > 0, then k begins and ends with digit 1, all other digits of k being 0.
The number of zeros in 1x1, where the x are zeros, is the same as (the number of zeros)/4 in (1x1)^4 = 1x4x6x4x1.
|
|
LINKS
|
Table of n, a(n) for n=1..10.
P. De Geest, Palindromic cubes (The Simmons test is mentioned here)
G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy]
|
|
FORMULA
|
a(n) = A056810(n)^4
|
|
MATHEMATICA
|
Do[If[Module[{idn = IntegerDigits[n^4, 10]}, idn == Reverse[idn]], Print[n^4]], {n, 100000001}]
|
|
PROG
|
(MAGMA) [ p: n in [0..10000000] | s eq Reverse(s) where s is Intseq(p) where p is n^4 ];
|
|
CROSSREFS
|
Cf. A002113, A168576, A056810, A002778, A002779.
Sequence in context: A017284 A017392 A017656 * A013861 A291145 A256839
Adjacent sequences: A186077 A186078 A186079 * A186081 A186082 A186083
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Matevz Markovic, Feb 11 2011
|
|
STATUS
|
approved
|
|
|
|