OFFSET
0,8
FORMULA
Recurrence: T(n+1,k+1) = [T^3](n,k) - [T^2](n,k) + [T^0](n,k) for n>=k>=0, with T(n,0)=1 for n>=0.
Let U equal T shifted up one diagonal; then U*T^2 equals U shifted left one column.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1;
1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1;
1, 1408656, 1587501, 632104, 143335, 22156, 2557, 232, 17, 1, 1;
1, 18499835, 22127494, 9167575, 2149761, 343091, 40936, 3858, 297, 19, 1, 1; ...
Matrix square T^2 begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
...
Matrix cube T^3 begins:
1;
3, 1;
6, 3, 1;
16, 12, 3, 1;
60, 55, 18, 3, 1;
305, 315, 118, 24, 3, 1;
1988, 2243, 912, 205, 30, 3, 1;
15951, 19378, 8342, 1995, 316, 36, 3, 1;
...
Thus T^3 - T^2 + I begins:
1;
1, 1;
3, 1, 1;
10, 5, 1, 1;
42, 27, 7, 1, 1;
226, 173, 52, 9, 1, 1;
1525, 1330, 442, 85, 11, 1, 1;
12555, 12134, 4345, 897, 126, 13, 1, 1;
...
which equals T shifted left one column.
...
ALTERNATE GENERATING FORMULA.
Let U equal T shifted up one diagonal:
1;
1, 1;
1, 3, 1;
1, 10, 5, 1;
1, 42, 27, 7, 1;
1, 226, 173, 52, 9, 1;
1, 1525, 1330, 442, 85, 11, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1;
...
then U*T^2 begins:
1;
3, 1;
10, 5, 1;
42, 27, 7, 1;
226, 173, 52, 9, 1;
1525, 1330, 442, 85, 11, 1;
12555, 12134, 4345, 897, 126, 13, 1;
...
which equals U shifted left one column.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0;
A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1,
if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return(A[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 01 2011
STATUS
approved