login
A185620
Triangular matrix T that satisfies: T^3 - T^2 + I = SHIFT_LEFT(T), as read by rows.
11
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 5, 1, 1, 1, 42, 27, 7, 1, 1, 1, 226, 173, 52, 9, 1, 1, 1, 1525, 1330, 442, 85, 11, 1, 1, 1, 12555, 12134, 4345, 897, 126, 13, 1, 1, 1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1, 1, 1408656, 1587501, 632104, 143335, 22156, 2557
OFFSET
0,8
FORMULA
Recurrence: T(n+1,k+1) = [T^3](n,k) - [T^2](n,k) + [T^0](n,k) for n>=k>=0, with T(n,0)=1 for n>=0.
Let U equal T shifted up one diagonal; then U*T^2 equals U shifted left one column.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1;
1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1;
1, 1408656, 1587501, 632104, 143335, 22156, 2557, 232, 17, 1, 1;
1, 18499835, 22127494, 9167575, 2149761, 343091, 40936, 3858, 297, 19, 1, 1; ...
Matrix square T^2 begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
...
Matrix cube T^3 begins:
1;
3, 1;
6, 3, 1;
16, 12, 3, 1;
60, 55, 18, 3, 1;
305, 315, 118, 24, 3, 1;
1988, 2243, 912, 205, 30, 3, 1;
15951, 19378, 8342, 1995, 316, 36, 3, 1;
...
Thus T^3 - T^2 + I begins:
1;
1, 1;
3, 1, 1;
10, 5, 1, 1;
42, 27, 7, 1, 1;
226, 173, 52, 9, 1, 1;
1525, 1330, 442, 85, 11, 1, 1;
12555, 12134, 4345, 897, 126, 13, 1, 1;
...
which equals T shifted left one column.
...
ALTERNATE GENERATING FORMULA.
Let U equal T shifted up one diagonal:
1;
1, 1;
1, 3, 1;
1, 10, 5, 1;
1, 42, 27, 7, 1;
1, 226, 173, 52, 9, 1;
1, 1525, 1330, 442, 85, 11, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1;
...
then U*T^2 begins:
1;
3, 1;
10, 5, 1;
42, 27, 7, 1;
226, 173, 52, 9, 1;
1525, 1330, 442, 85, 11, 1;
12555, 12134, 4345, 897, 126, 13, 1;
...
which equals U shifted left one column.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0;
A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1,
if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return(A[n+1, k+1])}
CROSSREFS
Cf. columns: A185621, A185622, A185623; A185624 (T^2), A185628 (T^3).
Cf. variants: A104445, A185641.
Sequence in context: A307847 A080214 A263383 * A096066 A294746 A326180
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 01 2011
STATUS
approved