This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294746 Number A(n,k) of compositions (ordered partitions) of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals. 21
 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 13, 1, 1, 1, 35, 217, 75, 1, 1, 1, 126, 4245, 8317, 525, 1, 1, 1, 462, 90376, 1239823, 487630, 4347, 1, 1, 1, 1716, 2019836, 216456376, 709097481, 40647178, 41245, 1, 1, 1, 6435, 46570140, 41175714454, 1303699790001, 701954099115, 4561368175, 441675, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Alois P. Heinz, Antidiagonals n = 0..45, flattened FORMULA A(n,k) = [x^((k+1)^n)] (Sum_{j=0..k*n+1} x^((k+1)^j))^(k*n+1) for k>0, A(n,0) = 1. EXAMPLE A(3,1) = 13: [1/4,1/4,1/4,1/4], [1/2,1/4,1/8,1/8], [1/2,1/8,1/4,1/8], [1/2,1/8,1/8,1/4], [1/4,1/2,1/8,1/8], [1/4,1/8,1/2,1/8], [1/4,1/8,1/8,1/2], [1/8,1/2,1/4,1/8], [1/8,1/2,1/8,1/4], [1/8,1/4,1/2,1/8], [1/8,1/4,1/8,1/2], [1/8,1/8,1/2,1/4], [1/8,1/8,1/4,1/2]. Square array A(n,k) begins:   1,   1,      1,         1,             1,                1, ...   1,   1,      1,         1,             1,                1, ...   1,   3,     10,        35,           126,              462, ...   1,  13,    217,      4245,         90376,          2019836, ...   1,  75,   8317,   1239823,     216456376,      41175714454, ...   1, 525, 487630, 709097481, 1303699790001, 2713420774885145, ... MAPLE b:= proc(n, r, p, k) option remember;       `if`(n `if`(k=0, 1, b(k*n+1, 1, 0, k+1)): seq(seq(A(n, d-n), n=0..d), d=0..10); MATHEMATICA b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]]; A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, 0, k + 1]]; Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A000012, A007178(n+1), A294850, A294851, A294852, A294853, A294854, A294855, A294856, A294857, A294858. Rows n=0+1, 2-10 give: A000012, A001700, A294982, A294983, A294984, A294985, A294986, A294987, A294988, A294989. Main diagonal gives: A294747. Cf. A294775. Sequence in context: A263383 A185620 A096066 * A064085 A256692 A228637 Adjacent sequences:  A294743 A294744 A294745 * A294747 A294748 A294749 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Nov 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 01:57 EST 2018. Contains 317159 sequences. (Running on oeis4.)