OFFSET
0,9
COMMENTS
Row r >= 2, is asymptotic to r^(r*n + 3/2) / (2*Pi*n)^((r-1)/2). - Vaclav Kotesovec, Sep 20 2019
LINKS
Alois P. Heinz, Antidiagonals n = 0..45, flattened
FORMULA
A(n,k) = [x^((k+1)^n)] (Sum_{j=0..k*n+1} x^((k+1)^j))^(k*n+1) for k>0, A(n,0) = 1.
EXAMPLE
A(3,1) = 13: [1/4,1/4,1/4,1/4], [1/2,1/4,1/8,1/8], [1/2,1/8,1/4,1/8], [1/2,1/8,1/8,1/4], [1/4,1/2,1/8,1/8], [1/4,1/8,1/2,1/8], [1/4,1/8,1/8,1/2], [1/8,1/2,1/4,1/8], [1/8,1/2,1/8,1/4], [1/8,1/4,1/2,1/8], [1/8,1/4,1/8,1/2], [1/8,1/8,1/2,1/4], [1/8,1/8,1/4,1/2].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 10, 35, 126, 462, ...
1, 13, 217, 4245, 90376, 2019836, ...
1, 75, 8317, 1239823, 216456376, 41175714454, ...
1, 525, 487630, 709097481, 1303699790001, 2713420774885145, ...
MAPLE
b:= proc(n, r, p, k) option remember;
`if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add(
b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r))))
end:
A:= (n, k)-> `if`(k=0, 1, b(k*n+1, 1, 0, k+1)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, 0, k + 1]];
Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Nov 07 2017
STATUS
approved