login
A185624
Triangle, read by rows, equal to the matrix square of triangle A185620.
6
1, 2, 1, 3, 2, 1, 6, 7, 2, 1, 18, 28, 11, 2, 1, 79, 142, 66, 15, 2, 1, 463, 913, 470, 120, 19, 2, 1, 3396, 7244, 3997, 1098, 190, 23, 2, 1, 30073, 69004, 40079, 11587, 2122, 276, 27, 2, 1, 314037, 771359, 466448, 140092, 26707, 3638, 378, 31, 2, 1, 3796561, 9933242, 6208551, 1921122
OFFSET
0,2
EXAMPLE
Triangle begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
30073, 69004, 40079, 11587, 2122, 276, 27, 2, 1;
314037, 771359, 466448, 140092, 26707, 3638, 378, 31, 2, 1;
3796561, 9933242, 6208551, 1921122, 377495, 53149, 5742, 496, 35, 2, 1; ...
This triangle equals the matrix square, R^2, of triangle R = A185620, which begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1; ...
where R^3 - R^2 + I equals R shifted left one column.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0; A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1, if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return((A^2)[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 07 2011
STATUS
approved