login
A185285
Triangle T(n,k), read by rows, given by (0, 2, 3, 4, 6, 6, 9, 8, 12, 10, 15, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.
1
1, 0, 1, 0, 2, 1, 0, 10, 6, 1, 0, 74, 52, 12, 1, 0, 730, 570, 160, 20, 1, 0, 9002, 7600, 2430, 380, 30, 1, 0, 133210, 119574, 42070, 7630, 770, 42, 1, 0, 2299754, 2170252, 822696, 166320, 19740, 1400, 56, 1, 0, 45375130, 44657106, 17985268, 3956568, 528780, 44604, 2352, 72, 1
OFFSET
0,5
COMMENTS
The Bell transform of A004123(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
EXAMPLE
Triangle begins :
1
0, 1
0, 2, 1
0, 10, 6, 1
0, 74, 52, 12, 1
0, 730, 570, 160, 20, 1
0, 9002, 7600, 2430, 380, 30, 1
0, 133210, 119574, 42070, 7630, 770, 42, 1
MATHEMATICA
(* The function BellMatrix is defined in A264428. *)
a4123[n_] := If[n == 1, 1, PolyLog[-n+1, 2/3]/3];
rows = 10;
M = BellMatrix[a4123[#+1]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2019 *)
PROG
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: A004123(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Row sums are A136727.
Sequence in context: A364068 A293881 A362308 * A268434 A010107 A324429
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 22 2011
EXTENSIONS
More terms from Jean-François Alcover, Jun 25 2019
STATUS
approved